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PREFACE

The objective of the research has b;en to understand the behavior of
dry or saturated granular materials under cyclic shearing.’ To this end, two
fundamental subjects have been considered, These are:

(1) To understand what happens to granular materials under confining pres-
sure, when subjected to a cyclic shearing, without requiring the detailed
behavior in each cycle, l

(2) To understand, in terms 6f statistically described grain behavior, the
detailed response in each cycle.

Objective (1) relates to the overall macroscopic failure mechanisms of
soils under dynamic loading, whereas Objective (2) seeks to pfovide a micro-
scopic basis for the detailed understanding of the overall macroscopic
responses.

Progress has been made in both of the above-mentioned subject areas,

The results are summarized in this report, |

The report is organized in the following manner. In Chapter 1, a sum-
mary of the basic problem area and results are presented. In Chapter 2, the
details of an energy method for the calculation of the void ratio in the case
of dry sand, and the pore water pressure in ﬁhe case of saturated undrained
sand, are presented together with a comparison with experimental results. In
Chapter 3, a framework is given for the calculation of the stress amplitude in
terms of the number of cycles and the strain amplitude, or the strain amplitude
in terms of the number of cycles and the stress amplitude, for both dry and

saturated samples subjected to cyclic shearing. Chapter 4 examines the flow



of granular materials from a point of view different from that of the pre-
ceding chapters. In this chapter the response of granular materials to mono-
tone leoading is considered in the context of a plasticity theory which includes
dilatancy and pressure sensitivity. Moreover, the questions of densification
and liquefaction under cyclic loading are reexamined in the context of dimen-
sional énalysis. In Chapter 5, a statistical approach to the behavior of a
dry granular mass in simple shear is presented, and the observed initial den-
sification, subsequent dilatancy, and the net densification upon load reversal
are given microstructural explanation. Chapter 6 presents the results of a
systematic experimental work on densification and liquefaction in simple
shearing. These results are rather striking and provide remarkable confirmation
of the theory presented in Chapter 5.

Each chapter is written in such a manner that it can be read independently.



CHAPTER 1

SUMMARY OF RESULTS AND RECOMMENDATIONS

1. INTRODUCTION
As mentioned in the preface, the basic subjects of the present work
are:

(1) To understand what happens to granular materials under confining pres-
sure, when subjected to a cyclic shearing, without requiring the detailed
behavior in each cycle.

(2) To understand, in terms of statistically described grain behavior, the
detailed response in each cycle,

Subject (1) can be further subdivided into:
A. Densification of dry sand in cyclic shearing;
B. Liquefaction of saturated undrained sand in cyclic shearing.

In the sequel, these areas will be discussed.

2. DENSIFICATION
Consider strain-controlled cyclic shearing, where the strain is prescribed
to be

Y =19 0(t) , -1<¢() <+, )

where ¢ is a given periodic function. Let Ty be the stress amplitude when

Y = Yoo and assume that the corresponding value of the relative void ratio*

is Py In our theory we attempt to obtain an expression for ™ in the following

*The relative void ratio is defined as p = e - e where e is the void ratio,

and em is its minimum value.



form:
Ty = T(YO, pM) . (2)

To this end, we first establish with the aid of an energy consideration, an

- explicit expression for PM in terms of Yo and the number of cycles N; the de-

tails are given in Chapter 2, where results are compared with experiments.
Then we use symmetry and other arguments in an effort to render the right-

hand side of (2) explicit. For example, one notes that

?(—YO, oy = —?(yo,pM) ,

_il'_z o, %(0: DM) =0 3 (3)

the detailed results are given in Chapter 3.

In obtaining explicit relations for the funttions and parameters which
describe the material response, we require extensive experimental data. How-
ever, published experimental results and reports do not include all the neces-
sary information. This has resulted in a hindrance for further development -
regarding this subject area. To overcome this difficulty, we have completed

a series of experiments ourselves; see Chapter 6.

3. LIQUEFACTION
Consider stress-controlled cyclic shearing, where the stress is prescribed
to be

T(®) = 1 9 () , -1 <P(c) <+, )

where ¢ is as in (1). Let Yy and Py respectively be the strain amplitude and

the normalized* excess pore water pressure. In the present theory we attempt

* If the excess pore water pressure-is 5 and the confining pressure is Oc»

then the normalized excess pore water pressure is defined as p = ﬁ/oc.



to obtain Y™ in the following form.

Yy = ?(TO, pM) . (5)
In this case again, we first use an energy consideration to express pM in
terms of T and the number of cycles N, and then, again using symmetry and
other considerations, obtain an explicit form for the right-hand side of (5);
these and related calculations are given in detail in Chapters 2 and 3. As
is discussed in Chapters 2 and 3, the theory corresponds well with some
existing experimental results, Howéver, further progress requires additional

coordinated experiments.

4. STATISTICAL CONSIDERATIONS

Since a mass of granular materials consists of a collection of a large
number of grains, it is reasonable to expect that by appropriate statistical
considerations and the use of the basic laws of mechanics, one should be able
to obtain basic equations which characterize the overall macroscopic behavior
of the material in terms of the statistics of grain distribution, the coeffi-
cient of friction, and other relevant parameters. (For geotechnical applica-
tions, the grains can be considered as rigid, since low confining pressures

are involved.) While this sounds like a very ambitious objective, some pro-

gress has been made. The work completed under the present project is given in
Chapter 5. It involves the calculation of the rate of dilatamcy or demsifica-
tion in simple shearing, in terms of some energy considerations and simple sta-
tistics of microstructural behavior. The results serve to explain the observed
volumetric behavior of granular materials in monotone as well as cyclic shearing.
In particular, it brings into focus the importance of the granular fabric in

relation to the corresponding liquefaction potential.



5. TFABRIC AND LIQUEFACTION POTENTIAL

The theory suggests that during a cycle of loading and unloading, the
fabric of the granular material is changed. This change may result in a dras-
tic change of the liqueféction potential of the sample., For example, if a
drained sample is first subjected to a relatively large shear stress and then
the stress is brought to zero, in subsequent cyclic shearing under undrained
conditions, the sample may liquefy immediately. Experimental results support
this finding, as discussed in Chapter 6. These experimental results are rather
striking. For example, in Fig. 3b of Chapter 6, densification under cyclic
loading of a virgin sample (the lower figure) is compared with that of a liquefied
sample (the upper figure). As is seen, due to liquefaction the fabric is changed,
and, even with a smaller void ratio, the preliquefied sample shows much
larger densification potential than the virgin sample. Results presented in
Chapter 6 clearly show that much remains to be learned on the mechanics of lique-
faction. 1In our laboratory, we have been able to prepare two samples of identical
density from the same sand, but with such fabrics that one would liquefy within
one cycle while the other one after more than 100 cycles of the same stress shape
and amplitude.

Our recommendation is that further scientific experimental and theoretical
research is necessary in the area of liquefaction and densification of granular
masses in cyclic loading, if we are to develop the technical ability for pre-

dicting and preventing ground failures induced by earthquakes.



CHAPTER 2
A UNIFIED APPROACH TO DENSIFICATION AND LIQUEFACTION OF COHESIONLESS SAND

IN CYCLIC SHEARING

1. INTRODUCTION

It is known that loose sand (either dry or saturated but drained) under-
goes densification (compaction) when subjected to cyclic shearing. This sub-
ject has been experimentally treated extensively by a number of investigators
who have brought into focus essential features of this phenomenon; see for
example, Silver and Seed (1971la,b),* Youd (1970 and 1972), and references
cited therein; see also Faccioli and Resendiz (1976) for a review of recent
developments. In the case of undrained saturated sand, the tendency for den-
sification leads to an increase in pore water pressure, and therefore a re-~
duction in the shear strength of the sand. A continuous loss of strength of
this kind can lead to the phenomenon of liquefaction which has been observed
to occur during earthquakes, as well as in laboratory experiments; see for
example, Seed and Idriss (1967 and 1969), Seed and Lee (1966), Seed and Pea-~
cock (1971), Martin et al. (1975), Faccioli and Resendiz (1976) and references
cited therein. In view of the extensive experimental and field investigations
by the above-mentioned authors and others, the basic physics of the phenomenon
of liquefaction has been fairly well understood. To our knowledge, however,
there exists no fundamental theory for either the densification or the lique-
faction phenomenon.

In this chapter we shall present a unified theory for the densification

and liquefaction of cohesionless sand. The theory is motivated by a consideration

* References are listed at the end of this chapter.



of the microstructural (at the grain size level) rearrangement of the sand
particles, which takes place during cyclic shearing, and which leads to the
densification of dry or saturated but drained sand, and to the liquefaction
of saturated undrained sand. We shall apply the results of our theory to
several sets of relevant available experimental results, in order to show
how effectively the theory accounts quantitatively for the observed behavior.
The theory is based on the observation that the densification of sand
involves rearrangements of its grains and hence, an expenditure of a certain
amount of energy which increases as the void ratio approaches its minimum
value, this minimum of course depending on the grain structure, size distri-
bution, confining pressure, and other relevant parameters. If the saturated
sand is undrained and is subjected to a fixed confining pressure, the ten-
dency toward densification induced by cyclic shearing, results in an increase
in the pore water pressure, and therefore a decrease in the frictional and
contact forces that exist at the interface between adjacent sand particles.
Hence the corresponding energy required to decrease the pore volume, decreases
with increasing pore water pressure. On the basis of these observations, a
differential equation is proposed, which relates the energy loss in cyclic
shearing to the consequent change in the void ratio for the dry sand, and to
the consequent increase in the pore water pressure in the saturated undrained
case. The theory then is applied in its simplest form to predict some of the
existing experimental results for both the densification and liquefaction
phenomena; the obtained results seem to lend considerable credit to the basic

approach.

2. THEORY
Consider a sand sample of volume V which contains a certain amount of

solid having the volume VS. The remaining volume, V - Vs = Vp’ will be



assumed to be occupied by water for saturated sand (Vp = Vw) or be empty for

dry sand (Vp Vv). Since we wish to treat the densification and liquefaction
phenomena in a unified manner, we define e = VP/VS, and refer to it as the
void ratio, keeping in mind that, for saturated sand, it actually represents
the ratio of the volume of the water, Vw, to the volume of the solid, VS, in
a given sample of volume V.

Assume that the sample is subjected to a fixed confining pressure 9>
and consider its cyclic shearing. To change ‘the void ratio from its current
value, e, to e + de, a certain amount of energy must be consumed. We observe
that this energy must be a decreasing function of e - e where e is the
minimum void ratio which will depend in general on the size and shape distri-
bution of the sand particles, on the confining pressure, and on other relevant
parameters. Moreover, this energy must be a decreasing function of the excess
pore water pressure, p = EYGC, where ; is the actual excess pore water pres-
sure. To support these two statements, we observe that the void ratio cannot
be decreased below its minimum, e s without the expenditure of an "infinite"
amount of energy. Hence, more and more energy will be required for densifica-
tion, as e is being approached. When this sample is undrained, the tendency
for a reduction in e results in a tendency for increasing p. The increase in
the excess pore water pressure p then causes a reduction in the inner parti-
cle forces. Thus it becomes easier to rearrange the particles, and therefore
cause further increase in the pore water pressure.

To quantify the above observations, let dW be the amount of energy
(measured per unit volume of the sample) required to change the void ratio e
to e + de, and set

:) de
f(l+p)g(e-em)

dw = e8]
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where, with prime denoting differentiation, we must require that

£(1) =1, £f'>0

— ’

g(0) =0, g' >0, (2)
and where vy is a positive parameter which may depend on Tos but not on the
void ratios.

In Eq. (1) e and p are dimensionless quantities, as are the functions
f and g. The physical dimensions of v and dW must therefore be the same.
However, we assume that both v and dW are rendered dimensionless with respect
to a suitable reference value WO. As will be seen later on, since we cal-
culate dW on the basis of a dimensionless shear stress T < go/oc, it will
be properly dimensionless and will represent the energy measured per unit
volume per unit confining pressure; see Eq. (11) and Fig. 1. Hence, in all
subsequent equations all variables and functions are physically nondimensional
(unless otherwise stated explicitly).

The quantity (e - em) enters in a natural way in many of our subsequent
expressions. It represents the maximum amount of reduction in the void ratio
that can be theoretically accomplished (without crushing and changing indi-
vidual grains); since e is the present value of the void ratio, (e - em)

represents the relative looseness of the sand (the larger this quantity, the

looser the sand). We shall refer to (e - em) as the relative void ratio. We

observe that in soil mechanics literature the quantity

eM-e

Dr= eM-e
m

x 100 , (3)

i.e. the relative density is commonly used to characterize the relative dense-
ness of the sand; in (3) ey is the maximum void ratio.
For the drained sample, we set p = 0, so that £ = 1, and obtain

aw = S
g m

» (4)
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Fig. 1. 1/4 of a typical hysteretic loop (data from Silver and Seed, 1971a).
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For the undrained sample, we observe that
dv av XR av ecc
de = 5o =5 7 =~ (xyyle=-d=-—"dp,
s p S w P W w
so that (1) becomes
edp
W =V Ty SHCEERE (5)
o _
where Koo is the bulk modulus of the water, v = 725, and dp = dp/cc. We now
w

observe that the initiation of liquefaction is defined when the excess pore
water pressure equals the confining pressure 0o i.e., when p = 1. Since in
all practical cases, 0. does not exceed a hundred psi, the corresponding total
volumetric pore strain for p = 1, which does not exceed -OE/KW’ is negligibly
small (usually of the order of 10—5). Hence, for computational convenience,

we can set, in Eq. (5), e = e the initial void ratio, and arrive at

0’

ve
: I (6)

g(e0 - em) £f(Q1 + p) ’

dw =

We shall now integrate Eqs. (4) (for densification, and (6) for lique-

faction), and arrive at the following general results:

- ¢ de'
AW = v [ —————=  for densification, (7
gle' - e )
e m
0
ve p .
AW 0 f dp for liquefaction, (8)

where AW is the total energy consumed for the corresponding change.

In the sequel we shall use elementary forms for functions g and £, ob-
tain explicit results from Eqs. (7) and (8), and compare these results with
experimental observations. To this end we need to express more explicitly
the energy loss, &W, in terms of the number of cycles and the shear stress

amplitude (for the stress-controlled test) or the shear strain amplitude (for

the strain-controlled test).
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Estimate for Energy Loss AW

We shall estimate the energy loss AW after N cycles of shearing, using
the data for hysteretic damping obtained in cyclic shearing of drained cohe~
sionless sand. To this end let Ai be the area enclosed by the hysteretic
loop during the i?h cycle of shearing, and denote by Awi the corresponding
energy that has been actually used in rearranging the grain particles (both
Ai and AWi are dimensionless, and are measured per unit volume of the sample
and per unit confining pressure). We must have AW, = ) Ai’ where 0 < xi <1,

i i

and where Ai may depend on the number of preceding cycles as well as other

parameters. The energy loss AW may therefore be expressed as

N N
AW = I AW, = I XA, , (9)
i=1 * 4=1 * 1

Figure 1 shows a portion of a typical hysteresis loop obtained experi-
mentally by Silver and Seed (1971la) for cohesionless sand in cyclic shearing.
In the e€,0-coordinates with origin at O, the curve 0A may be approximated by

the expression

(10)

where the subscript i indicates that the hysteretic loop in the ith cycle of
shearing is being considered. Clearly, one may use more elaborate expres-
sions than (10) to represent hysteretic damping. However, our main objective
here is only to estimate the total area of the loop, and therefore, Eq. (10)
seems to be quite adequate.

The complete hysteretic loop is not quite symmetric with respect to the
€~ and o- axis of Fig. 1. However, the deviation from symmetry for cyclic
shearing of cohesionless sand, seems to be small enough to permit the assump-

tion of symmetry, which has been implied by many authors; see Silver and
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Seed (1971a,b), Hardin and Drnevich (1972), Yoshimi et al., (1977), and ref-
erences cited therein. If we use the assumption of symmetry, then the area

of the hysteretic loop in the ith cycle can be estimated as

oO ai ai+1
Ai=4£0d€=4KiT:Tido .

Transferring to the y,t-coordinates, noting that Awi is proportional to Ai’

and collecting all the resulting coefficients, we obtain

i -~
AW, = b t , Ty T 'rO/cc , (1)

where %O is the applied shear stress amplitude, and where, for a given sand,
the coefficient ﬁi in general depends on the number of preceding cycles, on
the confining pressure, on the relative void ratio e - e s as well as on
other relevant parameters. In the above expression it is alsq implied that
the exponent a, varies from cycle to cycle. Although, in general, this is
probably the case, for our purposes here we can replace oy by an average con-
stant value a, and assuming that the hysteretic loop is completely symmetrical
with respect to the ‘e-axis in Fig. 1, assign a positive even value to o; in
all our calculations, we have found that o = 4 yields results which are com-
patible with experimental observations in the liquefaction of cohesionless
sand.

In view of the above comments, we set a; =a in Eq. (11), and substitute

the result into Eq. (9) to arrive at

N N
AW = I h_ra+l = ﬁta+l, h= 3 h, . (12)
=1 & 0 0 i=1 i

Most results reported for the densification of drained sand in cyclic
shearing are for strain-controlled tests, where the amplitude of the applied

shearing strain is kept fixed, and the corresponding shearing stress
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amplitude is measured as a function of number of cycles for various test
conditions. It is observed that as the sample densifies with increasing
number of cycles in a strain-controlled test, the corresponding shear stress
amplitude increases (slightly) with the number of cycles, causing the hystere-
tic loop to elongate. Therefore, if we consider for a fixed number of cycles
the relation between the stress amplitude and the corresponding strain am-
plutide, experimental results show that we arrive at a curve similar to QOP

in Fig. 2; see, for example, Hardin and Drnevich (1972), and Yoshimi et al.
(1977). 1In Fig. 2 a typical hysteretic loop is shown with dashed curves.

The curve QOP is often approximated by the expression

_ C
YO = aro + bTO .

This equation permits us to express the energy loss AW in terms of the strain
amplitude Yo for strain-controlled tests using Eq. (12) which corresponds to
the stress-controlled test. However, as it stands, the above equation is too
difficult to solve for TO, and obtain a simple expression. In view of the
approximations involved, we feel justified to use the following much simpler

relation:

_ ., B
Yo = ATO s 13)

where, since curve QOP is centrally symmetric, we assign a positive odd value
to B; in all our calculations for densification in cyclic shearing we have
found that B = 5 yields results which are compatible with experimental obser-
vations. Based on the experimental results, we observe that the coefficient
A in Eq. (13) must be a decreasing function of the number of cycles and of
the relative density (i.e. A must decrease with decreasing relative void
ratio e - em). These conclusions are intuitively reasonable, because if the

stress amplitude is kept fixed, then the corresponding strain amplitude must
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decrease with the number of cycles (which causes further densification). More-
over, if we start out with smaller initial values of e - e (i.e., with denser
sands), for the same stress amplitude and after the same number of cycles, we
must obtain smaller strain amplitude. Hence, A must decrease with decreasing

e -e).

(0 )

If we now substitute from Eq. (13) into Eq. (12), we arrive at

o=yt (14)

We shall use Eqs. (12) and (14) in conjunction with (7) and (8) in all
our subsequent calculations. As was mentioned before, because of the symmetry
requirements, a will be assigned a positive even value, and B8 will be assigned
a positive odd value., In fact, as stated earlier, we shall set o = 4, and
B = 5. The coefficients h in Eq. (12) and k in Eq. (14) for a given sand, in
general, depend on the number of cycles, on the confining pressure, and on
the initial value of the relative void ratio e - e (or the relative density
Dr), as well as on other relevant parameters. Both h and k must be monotonical-
ly increasing function of the number of cycles N.

When the stress amplitude (in stress-controlled tests) or the strain
amplitude (in strain-controlled tests) is relatively large, a substantial
rearrangement of the sand particles takes place during each cycle of shearing.
In this case, the energy loss in each cycle is quite large and essentially in-
dependent of the previous cycles, On the other hand, when the amplitude of
shearing is very small (for example, strain amplitudes of much less than 0.1%),
the rearrangement of sand particles within each cycle will be very small, but
during each cycle the particles tend to arrange themselves into more stable
positions. After a large number of cycles which will be required to cause any

substantial changes, there will be less subsequent rearrangement of the
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particles, and therefore the energy ioss tends to decrease with the number of
cycles (which is large) for very small strain amplitude shearing.

In view of the above comments, we may assume, for rélatively large stress
amplitude in the stress-controlled test, that the coefficient h in Eq. (12) is
approximately proportional to the number of cycles, and hence use the follow-
ing expression:

o+l

AW = tho ,

(15)

where h is viewed as an average quantity. Similarly, when we deal with rela-
tively large strain amplitudes (say, strain amplitudes much greater than 0.1%),
we may approximate Eq. (14) by
atl
AW = klNYO B , for large strain amplitude, (16)
For very small strain amplitude shearing, we have examined experimental
results reported by Silver and Seed (197la,b) and also given to us by Profes-
sor Silver and Dr. Youd in private communications, and have observed that the
area of the hysteretic loop seems to decrease as l//ﬁ, with the number of
cycles. With this observation we have found that if we take k to be propor-
tional to VN, (which is obtained by integrating dN/vN) then we can fit very
nicely all the densification data reported by Youd (1972, 1977) for strain
amplitudes < 0.17%. Hence, we shall set
at+l

AW = k2/ﬁ§0 8 , for small strain amplitude. (17)

For future use we rewrite Eqs. (7) and (8) in the following form:

a+l

oy B2y f gl

kYo =V [ ge' - e) for densification , (18)
0 m
ve P '

~ o+l 0 dp

) 19
hTO g(eo - em) é £ +p") for liquefaction , (19)
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where a strain-controlled cyclic shearing is assumed for the densification
test, and a stress-controlled one for the liquefaction experiment.

In connection with Eqs. (18) and (19) one point must be carefully noted.
The left-hand sides in these equations represent the work performed, whereas
the right-hand sides denote the work required for the corresponding test.
Moreover, whereas the effect of the initial relative void ratio ey - e is
explicitly included in the function g in the right-hand sides of (18) and
(19), and therefore, parameter v in (18) and v in (19) should no longer be

regarded as functions of e, - e the same is not true for parameters k and

0
fi in the corresponding left-hand sides. As we mentioned above, both k and h

in general depend on e, - e as well as on the confining pressure 0. and the

0
number of cycles N. In fact, it is reasonable to expect that h and k should
increase with increasing confining pressure, and with decreasing initial value
of the relative void ratio, eg ~ ey’ because, in cyclic shearing, more energy
m
must be supplied in order to rearrange the sand particles under a larger con-
fining pressure, and also when a denser sand is used. However, experimental
results suggest that h, for example, is rather insensitive to the varia-

tions of the initial value of Dr (or e - em), if the sand is not relatively

0
too dense. In all the experimental results that we have examined (for lique-
faction), we have found that h in Eq. (15) can be taken to be independent of

Dr (or e. - em) for relative densities less than about 707%. When Dr exceeds

0]
80%, a strongly nonlinear relation between h and Dr becomes necessary in
order to correlate experimental results with the theory. This suggests that
a different deformation pattern may be taking place for dense sands as com-
pared with those with moderate values of D.. For Dr’s exceeding 807%, h seems

to take on larger values, although in this range little experimental results

are available to justify even a tentative conclusion.
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We finally point out that in calculating the energy loss AW, say, Eq.
(12), we have ignored the work corresponding to volumetric changes, i.e. we
have only included the work due to shearing. This is because the work due to
volumetric changes is, in general, several orders of magnitude smaller than
that pertaining to the shear deformation. For example, for the undrained
saturated sample, the volumetric strain for confining pressures of about 10
psi, is of the order of 1075, and therefore the corresponding work per unit
volume per unit confining pressure is of the same order of magnitude. On
the other hand, the area of the hysteretic loop in Fig. 1, which is also the
dimensionless work per unit volume per unit confining pressure, is of the
order of 10-3, and therefore the total work in, say, 10 cycles, would be of
the order of 10—2. In a similar way, it can easily be estimated that the work
done by the confining pressure on the drained sample during compaction is at
least 2 orders of magnitude smaller than the work involved in the inelastic
shearing of the specimen. This is indeed the case for all available experi-
mental results that we have examined or used in this paper. However, in very
special circumstances and under very large confining pressures, the work due
to volumetric changes may become significant, and accordingly it may have to

be included in the theory.

3. DENSIFICATION

Experimental Observations

Youd (1972) has summarized the essential features involved in the com-
paction of sand by repeated shear straining, and has presented extensive ex-
perimental results which confirm previous findings of Silver and Seed (197la,b).
It is observed that the compaction increases with the shear strain amplitude,

with the number of cycles, and with the initial void ratio. It is, however,
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independent of the frequency in the range of 10 to 100 or even more cycles

per minute.

Application of the Theory

The simplest version of the theory is obtained if we set, in Eq. (18),
(e-e) = (e -e e n>1 (20)
g m m ’ —

Then we obtain, upon integration,

e -e

v on ( 0_ %y forn=1,
m
AW =
v l-n l-n
—1 [(e-e)) - (eg-e)” 1 formn>1. (21)

Solving (21) for the void ratio e, we obtain

AW
e + (eo - em)exp[— —51 for n=1,

e = 1

1- - -
e + [(e0 - em) n +E\~)—]'AV/J]l T for n>1. (22)

Equations (22) show that the void ratio decreases monotonically, approach-
ing asymptotically the minimum value e » as the energy input per unit volume
of the sand, AW, in cyclic shearing becomes very large. We have found that
Eq. (22)1, namely n = 1, does not correspond to any of the observed experi-
mental results. Hence we have concluded that n must be greater than 1. As
a first approximation, our basic theory now yields

a+l 1

1 B ]l-n

_n ~
e=e + [(eo - em) + ky, , (23)
where a strain-controlled cyclic shearing with amplitude Yo is assumed, Eq.

(14) is used, and since the function k is not as yet determined, we have ab-

sorbed it into the parameter (n-1)/%.
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We shall now compare Eq. (23) with rather extensive experimental results

reported by Youd (1972).

Comparison with Experimental Results

In a series of experiments reported by Youd (1972), standard gradation
Ottawa sands were densified in a Norwegian Geotechnical Institute type
simple shear apparatus under repeated cycles of shear strains. Strains from
0.1% to 9% were applied under normal stresses ranging from 100 psf (4.8 kN/mz)
to 4,000 psf (192 kN/mz) with the number of strain cycles ranging from 1 to
150,000. 1In Fig. 3 the éolid curves represent Youd's results, where the ini-
tial void ratio eq is reported to be within the range 0.543 to 0.548, the ver-
tical pressure to be 1,000 psf, and the minimum void ratio attained, to be
about 0.412,

To compare Eq. (23) with the experimental results, we distinguish small
strain results (Yo.i 0.1%) from those for large strain amplitudes (yo > 0.1%).
In the first case we use Eq. (17) and in the second case Eq. (16). With o = 4

and B = 5, Eq. (23) then yields

1
e + [(ey-e )l—n + k YNy 1™ | for small strain amplitudes
m 0 m 2 0 ’ ’
e = 1
e + [(e, - ¢ )1-n + k Ny ]l-n for large strain amplitudes. (24)
m 0 m 10 i
We now set eq = 0.545, e = 0.412, and observe that our theoretical results
are rather insensitive to the exact values of the parameters kl, kz, and n,

as long as these parameters are within a specific range. In fact, as far as
the experimental data in Fig. 3 are concerned, we may choose 500 < kl < 1500,
6500 < k2 < 7500 and 3 < n < 4, As a specific case, we set kl = 1000, kz =

7000, and n = 3.5. Equations (24) then reduce to
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]‘2/5

0.412 + [155 + 7000/§y , for small strain amplitudes,

0

0.412 + [155 + lOOONYO]-Z/S , for large strain amplitudes. (25)

The dotted lines in Fig. 3 are graphs of Eq. (25) for the indicated values of
Yo We see that over the range of 0.1 to 8% strain amplitudes, and for 1 to
100,000 cycles, our theoretical results adequately fit the experiments,
although we have introduced rather rough estimates for some of the essential
quantities, such as the energy loss per cycle and its variation with the num-
ber of cycles. Also it should be pointed out that Eq. (20) is the simplest
elementary form that can be attributed to the function g, and that, guided

by experimental observation, one may be able to define the form of this func-
tion more accurately. In fact, it may be possible to obtain the general pro-
perty of this function on the basis of microstructural rearrangements which
take place in the cyclic shearing of a given sand., But this will require
careful observation and extensive experimentation. Notwithstanding all this,
Eq. (25) seems to give the trend of the general behavior rather well over a
wide range of strain amplitudes and the number of cycles. In fact, for N =1,
the theoretical results suggest some inaccuracy for the experimental results,
especially for the lowest curve corresponding to a large strain amplitude.

As is seen, an increase in strain amplitude from about 1% (the middle solid
curve) to a little more than 2% (second solid curve from below), a large

drop in void ratio occurs after one cycle of shearing, A similar drop is
observed when the strain amplitude is changed from 0.1% to about 0.2% (upper
two solid curves). However, when the strain amplitude is changed from a
little over 2% to a little over 8%, no such drop is recorded in the experi-~

mental data. Equations (25), on the other hand, predict that the void ratio
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will change from approximately 0.538 for Yo = 2,267% to 0,524 for Yo = 8.337,
which seems reasonable.

Dr. Youd has provided us with additional experimental results with a
lower strain amplitude range. These results are shown in Fig. 4 by means of
various geometrical marks. The data are for e, = 0,584, e = 0.428, and

0

o, = 400 psf. 1In this case if we set kl = 300, k2 = 4500, and as before

n = 3.5, we obtain

-2/5

0.428 + [104 + 4500/§§0] , for small strain amplitude,

-2/5

. + + Ny , for large strain amplitude.
0.428 {104 + 300 O] 1 litud (26)

In Fig. 4 the dashed curves (small strain amplitude) and the solid curves
(large strain amplitude) compare the theoretical predictions of Eq. (26)

with the experimental results, Comparing Eqs. (25) and (26), observe t?at
the coefficients kl and k2 increase with increasing confining pressure O.» as
has been pointed out before.

It should be noted that the experimental shear strain amplitudes re-
ported in Figs. 3 and 4 are average quantities as the shear strain was not
uniform throughout the thickness of the sample. This has been illustrated
in Fig. 1 of Youd's paper (1972) which gives the profile of the edge of the
deformed sample at the position of maximum shear deformation, for Yo = 4.7,
5, and 5.1% shear strain amplitudes, and after 1, 50, and 1,000 cycles, res-
pectively.* Therefore, one may expect a somewhat nonhomogeneous densification
of the experimental sample, whereas the theoretical results are based on the

assumption of homogeneous densification.

* The additional information has been provided by Dr. Youd in a private

communication.
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4. LIQUEFACTION

Experimental Observations

In a comprehensive report, DeAlba, Chan, and Seed (1975) cite experi-
mental work in the liquefaction of saturated cohesionless sand, and present
extensive results on a series of experiments conducted at the University of
California at Berkeley, with the aid of a large shaking table, on rather
large samples. The material used was Monterey number O sand with minimum

void ratio, e, = 0.564, and reported maximum void ratio, e, = 0.852. Ex-

M
periments were performed on samples with 54, 68, 82, and 90% relative densi-
ties, at about 8 psi confining pressures,* and cyclic shearing with various
fixed shear stress amplitudes. The pore water pressure build-up as a function
of the number of cycles, the number of cycles to initial liquefaction for
given shear stress amplitudes, and other relevant experimental results are
reported by DeAlba et al. (1975), and the corresponding data are analyzed

and corrected for the effect of the apparatus on the test results,

Here we shall apply our theory to these results, in order to test the
validity of our approach. Although we have made rough estimates in order to
render our results explicit, we have found an amazing correlation between our
theoretical predictions and the experimental results. In addition to the ex-
perimental data from DeAlba et al. (1975), we shall also compare our results

with experiments reported by Yoshimi and Oh-Oka (1975), and by Peacock and

Seed (1968).

Application of the Theory

The simplest theory corresponds to the following elementary forms for

the functions £ and g in Eq. (8):

* One experiment is reported for o, = 4.53 psi by DeAlba et al. (1975).



28

£(1L+p) = (L+p)F r>0,

g(eo - em) = (eO - em) y n>20. @7

Since the value of n has been set in the densification analysis at 3.5, we

shall use the same value here.* Our calculations have revealed that r must
be greater than 1, and that actually it ranges between 2 and 3. Therefore,
we shall take r 2.5 in the sequel.
Upon substitution into (19) and integration, we obtain, in view of the
discussion preceding Eq. (15),
Ve

hvrg = ——C— (1 - 1+ p) 7T, (28)

(e0 - em)

where we have set v = v/(r-1).

Comparison with Experiments for Sand with Relative Densities Less than 70Z

For a given sand with a given grain size and shape distribution, we ex-
pect that v = v/h should depend on the confining pressure and on the initial
value of the relative density. Since we identify the liquefaction initiation
with a state at which the pore water pressure equals the confining pressure,
i.e. when p = 1, we can immediately test the validity of (28), by setting

p=1, N= N2 (namely, the number of cycles to liquefaction), and obtain

(e, - e )
1+ 2 -r. .
N, T, —O—é——i'l—= sa -2t Ty =q. (29)
0

We now set o = 4, n = 3,5, and r = 2.5 in Eq. (29), and observe that the ef-
fect of the initial relative density Dr’ and the confining pressure O is

included in the parameter n. As discussed before (see comments which followed

* Note that the function g is the same as that used for the densification;

see Eq. (20).
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Eq. (19)), h and therefore n appear to be rather insensitive to the variation
in the initial relative density Dr for Dr less than about 707%; there may be

a lower limit for this insemnsitivity, but we have no experimental result to
make any assessment in this regard., Table 1 gives results obtained from Eq.
(20) on the basis of data reported by DeAlba et al. (1975), page 96, Fig. 5.1.
We see that the value of n is indeed a constant (within experimental error)
for relative densities 54% and 68%. 1In fact, we shall set

n=0.87x10°%0r%=1.35x10"°, (30)

for this sand with relative densities less than 70%. With these values, (28)

becomes -6
1.35 x 107%
Neo = O - a +p (31)

3.5
(eo - em)

which relates the number of cycles for a given 1, to the corresponding pore

0
water pressure. There are no free constants in this equation. Hence it can
be tested for its validity against experimental results presented by DeAlba
et al. (1975). Figures 5 and 6 represent such a comparison for sand at 547%
relative density, where the solid lines correspond to Eq. (31) and the marks
with various geometries are the corresponding experimental results., Note that
the experimental points associated with the middle curve in Fig. 5 is reported
by DeAlba et al. (1975) to correspond to 4.5 psi confining pressure, whereas
all other experimental data are for 8 psi confining pressure.

Without changing any parameters in Eq. (31), but only substituting for

the corresponding value e , for sand with relative density of 68% (i.e. e, =

O,
0.656), we have compared the results of this equation with the corresponding
experimental observations in Figs. 7 and 8. We observe that although we have

employed the most elementary forms for the functions g and f, our results are

in rather good agreement with experiments over a wide range of stress amplitudes



Table 1

e = e o, (psi) Ng T
—_— —_— _ _—
8.07 8 0.155

8.03 3.25 0.185

0.132 4,53 12.5 0.144

(Dr = 54%) 8.02 16 0.135
8.14 63 0.104

8.09 15 0.171

0.092 7.99 4 0.230

(Dr = 68%) 8.08 53 0.134

8.06 6 0.211

3.5
™ . iei_\e")__ Nyt with e = 0.564, & = .50
€ £°0 m

nx108(®

0.859
0.846
0.929
0.861

0.920

0.790
0.927
0.824

0.903

30
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and tﬁe number of shearing cycles. It is however possible to improve on fitting
the experimental results in Figs, 5-8 by choosing less elementary forms for
functions g and f£f. Lacking substantial experimental data, we have felt that
this is unnecessary and premature at this time.

We set p = 1 for liquefaction, and from (31) obtain

3.5 6

/e. = 0,87 x 10 ° . (32)

5
N To(e o

2 0
The two lower curves in Fig. 9 are plots of Eq. (32). The geometrical marks
are the corresponding experimental results. The correlation between experi-

ment and theory is indeed remarkable.

Comparison with Experiments for Relatively Dense Sands

As the relative density increases (the initial void ratio e approaches
em), Eq. (28) shows that more and more energy will be required to increase
the pore water pressure by a fixed amount. This is in accord with experi-
mental observations. If we set p = 1 (liquefaction initiation) and in vigw

of Eq. (3), we can rewrite Eq. (28) as
1

1+

} o, d_=D_/100, (33)

n[eM - dr(eM - em)]

.= { = —
Nz(eM - em) a1 - dr)

where %0 is the actual shear stress amplitude, and o is the confining pressure.
For a fixed number of cycles to liquefaction, Eq. (33) shows that the

required shear stress amplitude becomes very large as the relative density,

Dr’ increases, approaching infinity as D. approaches 100%. It is often very

difficult to test accurately for large relative densities. Therefore little

data are available in this range, Figure 10 shows experimental results re-

ported by Peacock and Seed (1968). A crude comparison would be obtained if

we set, in Eq. (33), a = 4 (as we have done so far), n = 3.5 (again, as before),
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and choose arbitrarily one experimental point in order to fix the material
parameter n; note that since a different material is involved, the correspond-
ing material parameter n will be different from that given by Eq. (30). We
have chosen the point with coordinates %O = 0.6 kg/cmz, and Dr = 50%, for
o, = 8 kg/cmz. This substitution into Eq. (33) then yields n = 0.46 x 10—7.
This constant is then used to calculate the dotted curves in Figs. 10 and 11l.
It is seen that the experimentally reported trend is nicely displayed by the
theoretical results, However, the theoretical curve deviates from the experi-
mental points, as the relative density exceeds 80%, and reaches 907%. This
indicates that the rather simple approach to estimate AW in Eq. (15), with

the parameter h kept at a fixed value independently of the value of the ini-
tial relative density, may not be good enough for a dense sand, as has been
mentioned before. To further stress this point, in Table 2 we have calcula-
ted the parameter n in Eq. (29), using the experimental results by DeAlba et
al. (1975) for Dr = 827%. We see that although n remains essentially constant
in this range, it does not have the same value as that for 54 and 68% rela-
tive densities; see Table 1. As was discussed in connection with Eq. (15),
the value of h in the expression for the work may tend to become larger for

Dr exceeding 80%. Since n is inversely proportional to h, its value decreases
with increasing Dr’ as is seen from Tables 1 and 2. Figures 12 and 13 compare
our theoretical results with the corresponding experiments for D. = 82%. The
upper curve in Fig. 9 gives the theoretical curve relating shear stress ampli-

tude to the number of cycles to liquefaction, for Dr = 827.

Comparison with Other Experiments

In an effort to test the range of the validity of Eq. (28), we have

tried to compare its predictions with other experimental results, However,
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Table 2
A : 6 (%)

ey ~ e . (psi) N2 L nx10

0.052 8.0 10 0.239 0.406
(D, = 827) ' 8.03 28.5 0.188 0.348

8.08 15.5 0.211 0.406

) ey - e

n = L N 1) with e = 0.564, e = 0.852

eo 20 m M

many of these results are in the form of small graphs, and some authors do
not report all the necessary parameters. Hence it is difficult to make as
detailed comparisons with other experimental results, as is done with the data
from DeAlba et al. (1975). However, if we accept Eq. (29) as a rough estimate,

for a given e, and e we may write

0

NQTS = constant . (34)

In this equation, T, may be interpreted as a dimensionless distortional stress

0

amplitude proportional to %O/Gc’ because if instead of the latter, one uses

m%o/cC with a constant m, only the constant in the right-hand side will be
changed.

Now we may fix the right-hand side of Eq. (34), by using one experimen-
tal point, and then compare the results with other experimental data on the

same sand, with the same Dr' Figures 14 and 15 are obtained in this manner,

where the corresponding experimental points are taken from Yoshimi and Oh-Oka

(1975), and Peacock and Seed (1968), respectively.
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Effect of Confining Pressure

As has been discussed before, we expect parameters h and v in Eq., (28)
to depend on the confining pressure Ous which then suggests that n in Eq.
(29) should depend on g.- Basically, an increase in g, tends to increase h,
and therefore may decrease n. This is reasonable since, for a fixed value of
T and after a given number of cycles, more work will be supplied under a
large confining pressure, and therefore, h in Eq. (15) should be expected to
increase with 0. if a' is kept fixed. 1In Fig. 16 the results of Eq. (33)
are compared with experimental observation by DeAlba et _al. (1975) and Pea-
cock and Seed (1968), where the dashed lines_are the calculated values. In
each case, one experimental point is used to estimate the value of n, and as
is seen, the other experimental points fall nicely on the corresponding line,
which confirms that, for a constant Dr and g.s M is indeed a material constant.

It should be possible to express n as an explicit function of 9. and Dr’

by a microstructural consideration. However, this is a rather difficult task

and requires careful study.
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CHAPTER 3

A FRAMEWORK FOR PREDICTION OF DENSIFICATION
AND LIQUEFACTION OF SAND IN CYCLIC SHEARING

1. INTRODUCTION

In Chapter 2 we have developed an energy approach for the theoretical
quantification of densification of loose dry sand and liquefaction of satura-
ted undrained sand (both cohesionless). Employing rather crude estimates for
the functions and parameters which enter the theory, it has been shown that

the theory includes the essential features of the involved physical phenomena,

and therefore can predict rather accurately many existing experimental results.

For the verification of the theory we have used data from experimental works
by Seed and Lee (1966), Peacock and Seed (1968), Seed and Peacock (1971),
Youd (1970 and 1972), Silver and Seed (197la,b), DeAlba et al. (1975), and
Yoshimi and Oh-Oka (1975).

It is the purpose of the present chapter to provide a fundamental ther-
modynamic framework for the unified theory of densification and liquefaction
of cohesionless sands given in Chapter 2, and in this manner to develop the
corresponding stress-strain relations for cyclic loadings. In light of such
an approach we are able to give a more systematic characterization of the
theory, and predict experimental observations in finer detail than before.
Moreover, the theory provides guidance for future experimental work in this
important area and defines significant parameters which require measurement
and monitoring. In Section 2 we introduce the concept of internal variables
and define the corresponding evolutionary equations. There we use the rela-
tive void ratio, p = e - e (which is the current value of the void ratio

minus its minimum value), for the densification problem, and the normalized
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excess pore water pressure, p, for the liquefaction problem, as our correspond-
ing internal variables; i.e. we use only one internal variable in each case.

We note that in Chapter 2 an energy concept has been used to obtain explicit
relations for the void ratio and the excess pore water pressure in terms of

the stress or strain amplitude, the number of cycles in a cyclic shearing,

and other relevant parameters. In the present chapter we shall integrate

these results into a theromodynamic setting and give a more detailed account

of the physical process. These are done in Section 3 for the densification

and in Section 4 for the liquefaction phenomena.

2. INTERNAL VARIABLES AND EVOLUTIONARY EQUATIONS

We shall need to treat the strain-controlled and the stress-controlled
cases separately. We shall give detailed results for densification, assum-
ing strain-controlled tests, and for liquefaction assuming stress-controlled

tests, and then briefly discuss opposite cases.

Densification

Let us assume that a sample of dry loose sand of unit mass is subjected
to a cyclic shear straining given by

v(t) = v e(t), -1 < ¢(t) < +1. 1)

Let T denote the corresponding shear stress, 6 be the temperature, and write
for the Helmholtz free energy,*

v = KP(Y,G,D), p e~ ems (2)

where the relative void ratio, p, is viewed as a measure of internal struc-

tural rearrangements which take place as a result of cyclic shearing of the

* Note that @ depends parametrically on Ts Py etc.
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sample. In this formulation the thermodynamic state is defined by the state
variables {y,® ,p}. The first two variables are assumed controllable externally,
whereas the last variable, p, measures dissipative internal processes that

take place during the loading history and are responsible for the inelastic
macroscopic behavior of the sample.

The shear stress is now given by*

‘r—al

—3Y=%(Y, 6, p). (3)

In the sequel we consider an isothermal case, § = const., and do not display

the temperature explicitly. Hence, instead of (2) and (3), we write

A

Vo= ly, p), T g%—= T(y, p). (4)

Here the stress is expressed as a function of the present value of strain vy,
and the present value of the relative void ratio p. The effect of the history

and inelasticity is included only through the internal variable p. If p is

* In the context of irreversihle thermodynamics, see for -example, Nemat-Nasser
(1975 and 1977), one also defines

- . .3
n 3 ° and A T

where n is the entropy, and A is the thermodynamic force conjugate to the in-

ternal variable p. The second law requires that

.=_-8—{‘£.=—: > 0
A 0 P w|6, =const. —

Moreover, we must have

v
o

= Qe
ae(Ap) >

nly,6=const.

In these equations and in what follows a superposed dot denotes time differ-

entiation. We shall not need to use the above relations in this study.
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fixed, then we have the case of elasticity (no dissipation); however, the
functional form for @ and ; will parametrically depend on the (fixed) value
of p.

To complete the formulation, one must establish an evolutionary equation
for the internal variable p. Therefore in a rather general setting we write,

o = Fy, o). (5)

When the function ¥ is known, then for a given strain history, y = ;(t),
one can integrate (5) and obtain p as a functional of the strain history. Sub-
stitution for p in (4) then gives the present value of stress in terms of the
present value of strain and the strain history.

The most difficult task in application to real cases is to identify the
function F. The only thermodynamic restriction here is the dissipation in-
equality,

- %%'% = ®|y=const. 20 ©
which states that a change in the internal structure of the material must be
accompanied by some energy loss into dissipation.

For cyclic loading in the frequency range of 10 to 100 or even more cy-
cles per minute, experiments show that the densification of dry or saturated
but drained sand is essentially independent of the frequency. Therefore, Eq.
(5) must be rate-independent. To implement this fact, we observe that any
change in p involves some restructuring of the sand grains, and any such
(micro) restructuring involves a certain amount of energy dissipation. Thus,
for dp # 0, we must have some energy dissipation dW > 0. We can therefore
rewrite Eq. (5),

. _ dp dwW

=80 8¥ _ & 7
b=qwar ~ Fs e 7
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L]

Now for a rate-independent process the rate of energy loss must be only a

function of state, so that*
dw _ »
ac = WG, ) . (8)

Combining Eqs. (7) and (8) we obtain
do = F(y, p)duw, (9
where we have set F = F/W.
Comparing Eq. (9) with Eq. (4) of Chapter 2, we observe that the latter
is a special case of (9), in the sense that it is assumed that Eky, p) S -4%3(9).
Equation (9) can be used to establish the time-history of p, provided
that the time-~history of y is known. However, this would require extensive
experimental results which do not exist at this time. Hence instead, we shall
attempt to establish the change in p at the end of, say, N cycles in the cyclic
straining of the kind defined by (1). Furthermore, we assume that N is very
large, and for calculation, regard it as a continuous variable. Thus, setting
Y=Y in (9), rearranging terms, and integrating over N cycles, we obtain
P '
= — (10)
g Flrgse")
where AW is the total amount of energy used in rearranging the particles over
N cycles, and the upper limit, p, of the integral in the right-hand side, is
the value of the relative density at the end of the Nth cycle, The energy
loss, AW, in general, depends on the strain amplitude, Yo on the number of

cycles, N, as well as parametrically on the initial value of p, confining

* Tt should be noted that ﬁ, as well as F and @, in general, will depend on
the confining pressure Oos the initial relative void ratio o = e, = e on

the grain size and shape distribution, and other relevant physical parameters.
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pressure, d , and other relevant physical parameters. In addition, it is a
functional of the form of the periodic straining used, i.e. it depends on the
form of the prescribed function ¢ (t) in Eq. (l1). Before proceeding to obtain
an explicit, albeit approximate, expression for the energy loss, it is more
convenient to first examine the liquefaction phenomenon, and obtain an expres-

sion for the energy loss for the stress—controlled tests.

Liquefaction

Consider now a sample of undrained saturated (macroscopically homogene-
ous) loose sand subjected to cyclic shearing,

T(t) = T8 (0), [o0)] < 1. S (11)

The procedure for formulating a thermodynamic setting for liquefaction fol-
lows the same line of reasoning as that for densification, except for the
following modifications: i) the pore pressure, p, replaces the relative void
ratio, p, as the internal (uncontrollable) state variable; and ii) since we
consider stress-controlled loading, Gibbs' function, ;, replaces the Helmholtz

free energy function, . Accordingly, the state variables are {1,8,p} and

since x = 1y - ¢ = x(1,6,p), it follows that¥*

~

a ~
Y=§§'=Y(T,6,p). (12)

In the sequel, the dependence on 6 will not be displayed.

The evolutionary equation for p is given by*¥*

* Here the entropy, n, and the thermodynamic variable, A, conjugate to p, are

respectively defined as

~

9 ~ 9 >
n = 3% = n(r,8,p), A = 3% = A(1,8,p).

However, in what follows these will not be used.

*% It should be noted that the function G in general depends parametrically on

oc,po,e = const. (isothermal processes) and other relevant physical parameters.
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p = G(t, p). (13)
Now, as in the case of densification, we note that the phenomenon of liquefac-
tion in a frequency range of 10 to 100 cycles per minute, is independent of

the frequency. Therefore, we may write

. dp dW ~

pzz‘%az-'—' G(T, p) N (14)
and assume that %% = &(T, p) is rate-independent. Thus,

dp = G(t,p)dW, (15)

~ o~

where G = G/W is a rate-independent function. Observe that Eq. (5) of Chapter
2 is a special case of (15): it is obtained by setting G(t,p) = ;% g(p) £ (1+p)
in (15).
Here again, we shall confine attention to a cyclic shearing defined by
(11), consider a relatively large number of cycles, and evaluate the pore
pressure, p, at the end of each cycle. Then substituting T for T in (15),
rearranging and integrating over N cycles, we obtain
P dn'
AW = [ —B— (16)
0 6(ryp")
where AW is the energy loss over N cycles, and in general depends on the stress

amplitude, t , the number of cycles, N, and other relevant physical parameters.
0

3. DENSIFICATION ANALYSIS

We shall now sketch how one may obtain in a strain-controlled cyclic
shearing of dry or saturated but drained sand, the stress amplitude in terms
of the strain amplitude and the number of cycles. To this end we consider a
typical cycle, and denote by Ty the stress amplitude and by Py the value of
the relative void ratio at the instant when the strain just attains the value

Yo From Eq. (4) we then obtain
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Ty = t(yo, pM) . an
It is clear that ; must be an odd function of YO’ and must increase as the
void ratio decreases, i.e. we must have
TCWO,DQ =—rw0,pM),
3T <0, 1(0,p.) = 0O . (18)
BQM M

The relative void ratio can be expressed in terms of Yo and the number
of cycles. To this end we obtain from Eq. (22) of Chapter 2,

1

—

_ l-n , =~ 1-n
oy = [Py~ + v awW] , (19)
where we have set p = Py and v = (n-1)/v. To compare (19) with experimental

results, we rewrite Eqs. (24) of Chapter 2, as

N lta 1
Py = [pé-n + kl Nl/2 YOB ]l—n for small strain amplitudes, (20)
and
1 1
Py = [pé_n + kZN YOB ]l—n for large strain amplitudes, (21)

where the coefficient v is absorbed in kl and k2. In Chapter 2 we have com-
pared the results obtained from (20) and (21) with experimental observations
reported by Youd (1972). Setting a = 4, 8 = 5, and n = 3.5, we obtained good
correlation with experiments over a wide range of strain amplitudes and number
of cycles.

Substitution from either (20) or (21) into (17) now yields an expression

for the stress amplitude which involves the strain amplitude and the number

of cycles. Since T is odd in Yg» We may consider the following series expansion:

- — .3
Ty = ApYg + Avg t e, (22)
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where the parameters A ,,A_,..., are functions of p
p 3°

1 , and because of (18)2, we

M

must require that

e, 1=1, (23)
3pM , s3geee o
A possible explicit form for Ty is
T, = (A,)y, + A Y3 + ...)/(1 +B.p, +B 92 + ...) (24)
M 1'0 3°0 1M 2°M ’

where A., A ..oy, and B

1’ A3 1 By

depend on the confining pressure, Ous and on other relevant parameters, but

..., are all positive constants which however

are independent of YO,N, and Py These constants must be evaluated by com-
parison with experimental results. Unfortunately experimental results suit-
able for this purpose do not exist at this time. We note that, instead of (24)

one may consider
T, = (A + Ay + )/(1 + B )", m> 1 (25)
M 1Yo T “3¥0 T - P/ » B2~

where m is a constant.

4, LIQUEFACTION ANALYSIS

We shall now attempt to obtain in a stress-controlled test, an expres-
sion for the strain amplitude in terms of the number of cycles, and the applied
stress amplitude in the liquefaction of saturated undrained cohesionless sand.
To this end we consider the Gibbs function ¥ introduced in Section 3, and
observe that if the shear stress t in Eq. (12) is changed to -t, the shear
strain y must change to -y, and therefore we must have

Y(-1,p) = ~y(1,p), (26)
where the dependence on temperature 6 is not displayed. Furthermore, as in
the case of densification, we shall assume that the dependency of ; on t and

p is separable, and hence
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x = x (/%) s (27)
and therefore in view of (12) we obtain
- ‘?l(T)
= w—— 28
Y(Tap) Xz(p) (28)

t
Consider now the i h cycle in a cyclic shearing with constant (dimen-

sionless) stress amplitude Tt

0
.t . ;
i h cycle as the state at which the shear stress T has just attained the value

To be definite, define the beginning of the

T, in the preceding cycle, and is being decreased. We denote the value of

0
the shear strain at the completion of the ith cycle by Yy and the correspond-
ing value of the excess pore water pressure, by Py and we seek to obta%g an
explicit relation for Yy in terms of the number of cycles N, the shear stress
amplitude Ty and other parameters; for a fixed number of cycles, a typical
~relation is shown by the solid curve POQ in Fig. 2 of Chapter 2. It

Y T

M> 0
should be noted however, that in the stress-controlled cyclic shearing of
undrained saturated sand, the shear strain, in general, attains its maximum
value somewhat after the shear stress has attained the value TO, and has
actually decreased below this value. However, for application, Yy 23S de~

fined above, provides an adequate measure of the shear strain build-up.

From Eq. (28) we therefore obtain,

§l(ro)
y, = —9_ (29)
M XZ(PM)
where we must have
Y1(-10) = =y (), v (0) = 0, (30)

and since the strain amplitude must increase with increasing excess pore water

pressure, we require that Xy be a decreasing function of Py i.e.

~

Xé < 0. (3D
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In particular, as Py approaches 1, i.e. as the excess pore water pressure
approaches the confining pressure O.s we expect that the positive function
iz(pM) takes on small values.
Let us now consider power series expansions for the functions iz(pM)
and yl(ro), and write
Yo = (a1, + a1 + /(L + ep, + cpi + L.u) (32)
M 10 3°0 1M 2°M ’
where the material parameters ¢y c2, «ee, and as a3, «++, are possibly func-
tions of e, = e . Further, based on our previous requirements we take aj, a3,
<o
..., positive and C1s Cos eees negative such that - I 1 < 1. We point out

i=1

that the formulation (32) is valid only for N < N, i.e., for p < 1 and for

A
initial liquefaction, i.e., when p = 1 for the first time. This limitation
on relation (32) is a result of the fact that we have separated the function

i into two parts, one only a function of T and the other only a function of p,

as in (27). 1In order to estimate the response for N > Nz and, in particular,

to obtain the limiting value of YN’ we have as a special case of (32) consider

_ 3
Yy = (alr0 +agTy + o)/ (L - ¢ pM), 0 <ecc<l1, (33)

Note that as the excess pore water pressure Py approaches 1, Yy becomes very
large, especially if c is assigned a value close to unity. The parameter c

as well as the constants a 3s ++. must be fixed by comparison with the

1@
experimental results. Note that for the general application the approximation
(33) may not be adequate, in which case one must consider the more general
representation (32). 1In the next section however, we shall use (33) and re-

taining only two terms in the series, compare our results with the experi-

mental data reported by DeAlba et al. (1975).
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Estimate of Pore Pressure

To use Eq. (17), we need an explicit expression for Py We obtain this
from Eq. (28) of Chapter 2,
L
Py = {1- N‘ré‘m(eo--em)n/?)eo}]'"'r -1, n,r>1, (34)
R
where v = v/h(r-1). This equation gives the excess pore water pressure as a

function of stress amplitude T, and the number of cycles N. It is an approxi-

0
mation and can be improved if better estimates for the material functions g
and f are used, and the calculation of the energy loss is improved. Such a

possibility is suggested by Eq. (16), for example. Lacking experimental re-

sults, however, we shall be content with the estimate given by (34).

Comparison with Experimental Results

Equation (34) gives the excess pore water pressure in terms of the num-

ber of cycles N, the dimensionless shear stress amplitude t_, and the initial

0
and the minimum values of the void ratio. 1In Chapter 2, the results of this
equation have been compared with several sets of experimental data reported

by DeAlba et al. (1975). These experimental results have been obtained at

the University of California at Berkeley with the aid of a large shaking table,
and using rather large samples of saturated cohesionless Montery number 0 sand
with minimum void ratio e = 0.564, and maximum void ratio ey = 0.852. The
experiments were performed on samples with 54, 68, 82, and 90 relative den-
sities, for confining pressure of about 55.2 kPa (8 psi), and for various
fixed shear stress amplitudes. The excess pore water pressure and the shear

strain amplitude have been reported in terms of the number of cycles for the

above stated values of the initial relative density.
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In Chapter 2, first theoretical results based on Eq. (22)2 of Chapter 2,
for the densification of dry sand (p = 0) have been obtained and compared with
the extensive experimental data reported by Youd (1970 and 1972)., 1In this
manner it was found that for a first-order approximation, n = 3,5 fits nicely
all the experimental results reported by Youd. Then liquefaction data of
DeAlba et al. (1975) and others (Peacock and Seed, 1968; Yoshimi and Oh-Oka,
1975) were considered in connection with (34), and it was found that r = 2.5
with o = 4 fits all reported experimental results. In this chapter, therefore
we shall use the same values for these parameters, i.e., we shall set o = 4,
n=3,5 and r = 2.5.

The parameter v in (34) is inversely proportional to parameter h which
occurs in the expression for the work in Eq. (15) of Chapter 2. It is reason-
able to expect that h should increase with increasing confining pressure 9.
and with increasing relative density Dr (or with decreasing ey em); this is
because under a larger confining pressure or when one starts with a denser
sand, more work will be required to rearrange the sand grains in the course
of cyclic shearing. Therefore, the parameter v in (34) is expected to de-
crease with increasing confining pressure or with increasing relative density.

If we set in (34) Py = 1, and denote by Ng the corresponding number of

cycles to liquefaction initiation, we obtain

(e, - e )"
Nlrg"-l —-9—;—-‘1—- =5 @-2tTy =g, (35)

0
It has been observed in Chapter 2 that, experimental results reported by
DeAlba et al. (1975) for less than 707 relative densities, correspond to
n=0.87 x 10-6, and those for 82% relative density correspond to n = 0.40 X
10¢6. We shall use these results in connection with the following approximate

version of Eq. (33), in order to predict the strain amplitude build-up in
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terms of the number of cycles and other relevant parameters:

= (al“to + 331'3)/(1 - cpM) . (36)

M
We have used the experimental results for 547 relative density, in order

to establish the following form for Eq. (36):

= (3/2 x 107 % + 107 2)/ @ - 4/5p) (37)

M 0
which is intended for small strain amplitudes, The corresponding results are
compared with experimental points in Fig. 1, for 54 and 68, and in Fig. 2 for
827 relative densities, respectively. As is seen, the comparison for 54% and
82% relative densities is quite good, especially since primitive forms for the
material functions have been used. For 687 relative density, however, the
comparison is not good for a small number of cycles, We feel, however, that

in this range the experimental results are not compatible with those reported
for 54 and 827 relative densities. As was pointed out above, for the same con-
fining pressure and the same shear stress amplitude, one expects that, ini-
tially, say, after one or two cycles, the strain amplitude should be smaller
for the denser sand than for the looser one. Some of the experimental points
for 687 relative density violate this expectation. For example, experimental

points for 1, = 0.135 and Dr = 547, are reported to fall below the correspond~-

0

ing points for t, = 0.134 and Dr = 68%, for the number of cycles from one to

0
twelve. Notwithstanding this, the experimental results reported by DeAlba
et al. (1975) seem to be the most extensive ones that the present author

has been able to obtain so far. These results certainly confirm the valid-
ity of our basic theoretical approach. However, a systematic and coordinated
theoretical and experimental work is still required, in order to establish a

reliable stress-strain relation for cyclic shearing of saturated drained or

undrained sand.
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CHAPTER 4

ON BEHAVIOR OF GRANULAR MATERIALS IN SIMPLE SHEAR

INTRODUCTION

When a sample of a granular cohesionless material is horizontally sheared

under vertical pressure, it is experimentally observed that (see, for example,

Reynolds (1885), Taylor (1948), Terzaghi and Peck (1948), Roscoe, Schofield,

and Wroth (1958), Rowe (1962), and more recently Youd (1970, 1972), and Silver

and Seed (1971); for references to other related works, see Faccioli and

Rese'ndiz (1976)):

1)

()

(3)

(4)

There is always an initial densiéication (decrease in void volume), the
magnitude of which decreases as the initial void ratio (the ratio of void
volume to the volume of the solid) approaches its minimum value;

if the sample is dense (i.e. its initial void ratio is close to the gor-
responding minimum value), then the initial densification will be followed
by dilatancy (increase in void volume) which continues until a critical¥*
void ratio is attained asymptotically;

if at a certain stage during the course of dilatancy, discussed in item (2)
above, the shearing is reversed, and the shear strain is gradually decreased
to its initial zero value (completing half of a strain cycle), then there is
always a net amount of densification, this amount decreasing as the initial
void ratio approcaches its minimum value;

if the sample is loose, i.e. the initial void ratio is larger than the cri-
tical value, then the sample densifies continuously until the critical void

ratio 1s reached asymptotically.

* This critical value, in general, depends on the value of the confining

pressure, on the size and shape distribution of the grains, and om other

relevant parameters. .
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Although there has been considerable theoretical work devoted to the
analysis of the deformation of granular materials (see, for example, Drucker

and Prager (1952), de Josselin de Jong (1958, 1971), Sepencer (1964, 1971),

Spencer and Kingston (1973), Mandl and Luque (1970), Mehrabadi and Cowin (1978),
and Nemat-Nasser and Shokooh (1977, 1978)), there exists no theory which can
account for all the above~stated physically observed facts. In recent papers,
Nemat-Nasser and Shokooh (1977, 1978) have used an energy consideration in a
setting of the classical irreversible thermodynamics, see Nemat-Nasser (1974,
1978), to formulate demsification of dry sand and liquefaction of saturated
undrained sand in cyclic shearing, focusing attention only on the state of the
sample at the end of a given number of cycles. These authors do not comnsider
the detailed processes of dilatancy and densification which take place during
the course of each cycle.

It is the purpose of this paper to present a theory for two-dimensional
(plane strain) flow of granular material, which introduces no additional kine-
matical or dynamical parameters than have already been presented by other
researchers in the literature, nevertheless, it explains in a simple and
convincing manner the phenomena of initial densification, subsequent dilatancy,
and the net amount of densification which results in the course of cyclic defor-
mation of a sample. The theory complements the wsrk of Mehrabadi and Cowin
(1978) who focused attention on the phenomenon of dilatancy of a very demnsely
packed sample. We shall demonstrate that a simple reinterpretation of Mehrabadi's
and Cowin's work in line with the physics of the process, can be used to gener-
alize the theory to include all the previously stited, physically observed phe-
nomena, without the introduction of any new kinematical or dynamical variables.

AIn Sec. 2 we discuss in detail the consequence Qf é simple model, and

show how it leads to an equation idengical to that obtained by Mehrabadi and
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Cowin (1978), which relates the rate of change of void ratio to the corres-

ponding rate of distortiomnal work. In Sec. 3 we then explain in terms of the
same model, how this equation not only explains the observed dilatancy and
densification, but also, because of its inherent nonsymmetry in dilatancy

and densification processes, yields a net amount of densification over

a cycle of éhearing.

2, A MODEL FOR DENSIFICATION AND DILATANCY

-

In this section we shall introduce a simple model for two-dimensional
flow of granular material, which seems to account rather convincingly for
the phenomena of densification and dilatancy that accompany the shearing of
these materials. Following Mandl and Luque (1970), the model distinguishes
between the macroscopic slip planes and the microscopic motion of individual
particles which must override each other within a shear band which defines the
macroscopic slip region, or within a sample which is macroscopically under-
going a homogeneous shearing. We shall concentrate on the physics of the
process, and to this end, examine to a certain extent possible detailed flow
of grains within a sample which 1is' (macroscopically) homogeneocusly sheared;
see Fig. 2.la. .

In Fig. 2.1b the macroscopic slip line is denoted by SS, which cuts
through the individual grains or families of. grains, in a random manner. As
has been pointed out by Mandl and Luque (1970), the actual slip may occur along
the wavy line S'S'. 1In Fig. 2.lb the individual grains are idemtified, but
these grains may be interpreted as groups of particles which participate momen-

tarily as a unit in the overall microscopic deformationm.*

* It has been observed experimentally, see for example, Davis and Deresiewicz
(1977), Fig. 4, p. 80, that grains often form individual groups which par-
ticipate in the overall deformation as individual units.
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af - - Xs

Figure 2.1 : (2) Simple shear under vertical pressure;

(b) Actual slip line S'S', macroscopic slip line SS,
and the angle of dilatancy v.

(¢) The Mohr-Coulomb yield condition.
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If the macroscopic shear stress and normal stress transmitted across the

plane SS are denoted,vrespectively, by t and o, then we may write
T =0 tan ¢, (2.1)

where ¢ is the macroscopic overall angle of friction. This angle of frictiom
is, in general, different from the microscopic local angle of frictiom, ¢u,
which corresponds to the slip of grains over the wavy line S'S'; i.e. for

the microscopic slip we must have
t* = g% tan ¢u’ (2.2)

where t* and o* are the shear and normal stresses transmitted across planes
tangent to the S'S' at each point. We shall denote by v the angle that the
tangent to S'S' makes with the positive SS-direction (which is in the direc-
tion of flow), and note that when v is positive, the particles tend to rise
during the course of flow (dilatancy), and when v is negative, the particles
move down (densification). This is perhaps the most important observation in
our development, especially wheﬁ we note that the normal stress ¢ (which is
compressive) acts in a totally nonsymmetrical way with respect to the upward
and downward motions: the normal stress assists particles in their downward
motion along the wavy line‘S'S', whereas it addes to ﬁhe resistance to the
motion, when the particles are forced to override each other upward along
S'S'. It is this nonsymmetrical behavior which seems to lie at the basis of
the observed initial densification, and the net demsification in cyclic shear-
ing, when granular materials are horizontally sheared under vertical pressure,
or when they are sheared under confining pressure (simple shear).

| We shall refer to the angle v as the "dilatancy angle.”

In the sequel we shall derive the basic equations for the model, using

"the Mohr-Coulomb yield conditioh, but we point out that our results can
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easily be extended to other suitable yield conditioms which involve the first

two invariants of stress. Since plane strain is considered, we use a two-

dimensional rectangular Cartesian coordinate system with unit base vectors,

s and coordinate axes x5 i=1, 2.

2.1 Governing Equations

To demonstrate the essential features of the model we comnsider a simple,
macroscopically homogeneous, shearing (under a constant vertical pressure) of
a sample of granular material which,bbeys the Mohr-Coulomb failure criterionm;

see Fig. 2.1. 1In Fig. 2.lc the state of stress at failure is defined by the

corresponding Mohr circle which is tangent to the failure line in the 7, o-plane

at point A. The macroscopic failure plane makes an angle of %-+-% with the

major principal II-plane across which the maximum compressive normal stress

1s transmitted. From the geometry of the Mohr circle we have
Tel (0, - 0,) cos ¢ = T cos ¢
21 2 max !
1
g=3 (cl - 02) cos ¢ cot ¢ T ax S8 $ cot ¢. (2.3)

Microscopic slip occurs within a slip band which consists of a stack of
microscopic slip lines similar to S'S'. We consider a typical microscopic
slip line, S'S', which locally makes an angle v with the macroscopic shear:
plane SS; see Figs. 2.1. We regard v positive when the motion of individual
particles or groups of particles along the direction defined by v 1s against
the resultant normal stress transmitted across macroscoplc shear plane SS;
this results in dilation. With this convention, v negative, therefore, cor-
reSpondé to densification. We shall derive all our equations for v positive,
and then allow v to take on both positive and negative values, as the physics

of the situation may dictate.

The slip of particles or groups of particles at a given point on micro-
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scopic slip line S'S', may be idealized and defined by a block moving along

the S'S'~direction, as shown in Fig. 2.2. The resultant forces on the block
consist of a vertical force, N, and a horizontal force, T, which are trans-
mitted across an elementary area A of macroscopic shear plane SS; hence,

g = N/A and t = T/A. The resultant normal force acting én the S'S'-plane is

thus givem by
N* = Ncos v+ Tsinv . (2.4)

-

When sliding occurs, the assoclated frictional force, F*, against which energy

is dissipated, will be given by
F* = N* tan ¢u (2.5)

which is the counterpart of (2.2). If we multiply both sides of (2.1) by A,

we obtain
T=N tan ¢ . (2.6)

We note, for positive v, ¢ exceeds ¢u.

Substitution from (2.6) into (2.4), and then into (2.5), yields

F* = ———3& cos($ - v). 2.7)

Consider now the motion of the block in Fig. 2.2b, by distance AL along
the S'S' plane. The vertical upward (for v positive) motiom of the block,

denoted by Ah, is given by
and the corresponding energy dissipation is

AW = F* A9 = F* Ah/sin v. ° (2.9)
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Figure 2.2 : (a) A macroscopic sample of height h, and area A, subjected to

the total shear force T and normal force N;

(b) A block characterizing the slip of groups of particles
moving in the S'S'-direction, with dilatancy angle v.
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Substitution for F* then gives

T tan ¢u cos(d - v)
sin ¢ sin v

AW = Ah . (2.10)

The microscopic (true) friction angle ¢u, the macroscopic (effective)
friction angle ¢, and the average dilatancy angle v corresponding to the
macroscopic sample shown in Fig. 2.2a, are related by a simple equation. To

obtain this, we use the balance of emergy, as follows:
-NAh + TAx = AW , : (2.11)

where Ax 1s the horizontal displacement of the block in Fig. 2.2b. We now
substitute from (2.6) and (2.10) into (2.11), note that Ah/ Ax = tan v, and
arrive at

tan ¢ = tan(¢ - V). (2.12)

A

Note that in this equation both ¢ and v are average macroscopic quantities
corresponding to the global response of the macroscopic sample whose behavior
is symbolically characterized by the block in Fig. 2.2b.

Later on we shall examine statistically the behavior of the macroscopic
sample which contains a finite number of families of particles, each having
possibly different dilatancy angles, Here however, let us assume that there
is only a single dilatancy angle v associated with the entire macroscopic
sample. With this assumption the total work per unit volume of the sample is
obtained if (2.10) is divided by V = hA, arriving at

T tan ¢u cos(¢ - v) ah
sin ¢ sin v h°

A = (2.13)

where Aw = AW/V is the incremental work per unit volume. Equation (2.13)

can be written in the rate form, by dividing both sides by the increment of
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time, At, and taking the limit; in this manner we obtain
T tan ¢ucos(¢ -v) v
= sin ¢ sin v v (2.14)

where, since A is constant, we have ﬁ/h = Aﬁ/Ah = @/V.

In Sec. 3 we shall exploit Eq. (2.14), in an effort to understand the
densification and dilatancy phenomena, by considering in a typical macroscopic
sample, a suitable statistical distribution for groups of particles with
active v's, Here, let us continue to assume that v has a constant value
within a given macroscopic sample.

The quantity, &/V, represents the rate of change of volume per unit cur-

rent volume, and is given by

tr D =D (2.15)

i1’

'<zl<z-

where D = Dij e, e is the deformation rate tensor; repeated indices are summed

3
over 1,2.

Equation (2.14) is equivalent to the equation obtained by Mehrabadi and Cowin
(1978), using a completely different approach. To see this equivalence, we

first observe that w in (2.14) is the total rate of work, consisting of the

distortional rate of work, %', and the dilatational rate of work, w'', i.e.

.'..-."a
w w w cijDij + pDkk’

where p is the hydrostatic pressure, p = t/sin ¢ cos ¢, as is seen from Fig.

2.1lc. Hence, substitution into (2.14) yields

T tsin(é - v) T
v [ sin ¢ sin\J+ cos ¢ sin ¢

1 D,

-1 C0s( = v) 2.16
cos ¢ sin v Dkk' ( )
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If we note that T/cos ¢ = Tmax’ then we obtain the corresponding equation
reported by Mehrabadi and Cowin (1968); observe that these authors used Tt for
the maximum shear stress, which is here denoted by Tmax' We note that the
theory presented by Mehrabadi and Cowin is in a more general setting and in-
volves another equation pertaining to noncoaxiality of stress and strain rates.
However, our development has its own appeal as it provides a simple and intui-
tive derivation. Observe that the dilatancy angle used in our derivation can
be positive or negative, as the situation may dictate. This fact has been also
observed in Mehrabadi's doctoral thesis (1979), although the published paper
by Mehrabadi and Cowin (1978) considers constant positive v only.

As was pointed out before, the actual motion of individual grains or
groups of grains along the S'S' wavy line, is nonsymmetric, because of the
effect of the vertical force transmitted across SS. This is true even if the
wavy line S'S' marks a completely symmetrical variation (e.g. a sine wave)
along the SS direction. Equation (2.14) contains this and relatéd facts, as

we shall discuss below.
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3. DENSIFICATION AND DILATANCY

We shall now consider a continuum approximation for granular material.
In this approximation we replace the nonhomogeneous material by a locally
homogeneous equivalent continuum which is endowed with certain average pro-
perties of the actual material. To.establish these properties we consider the
response of a suitably large sample which is initially statistically homogen-~
eous, and which is subjected to macroscopically homogeneous stress states,
On the microscopic level, however, the sample would be highly hetercgeneous,
as discussed before.

Consider a sample of the kind mentioned above with total volume, V, and
total void volume, Vv’ the corresponding volume of the solid being Vs =V - Vv'

The void ratio, therefore, is e = VV/VS, and it is easily verified that

.

v e
T tr ? = -]:-:e' ’ (3.1)

where it 1is assumed that the solid constitutent is rigid.

We consider the sample to be a magnified element of the equivalent con-
tinuum, the element may be momentarily located in a macroscopic slip band.
The element, therefore, will have the properties which are obtained by sta-
tistical averaging over the sample. The sample includes a stack of micro-
scopic wavy slip lines similar to S'S' in Fig. 2.1lb, over which individual par-
ticles or groups of particles may slip. We take the macroscopic shear direc-
tion to be in the horizontal SS-direction, assume that the macroscopic trac-
tion transmitted across SS consists of a compressive normal stress g, and a
shear stress t, as shown in Fig. 2.la. In accordance with the Mohr-Coulomb
assumption, a particle (or a group of particles) begins to slide in the SS-

direction, when the resultant shear stress in the slip direction reaches a
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critical value. Since the normal stress ¢ assists the particles which tend

to slide down (the corresponding v is negative), and hinders those which tend
to move upward (the corresponding v is positive), we immediately conclude that,
as the normal stress is kept fixed and the shear stress, T, is increased from

zero, particles or groups of particles with negative values of v become active

first, starting with those with larger absolute values of v. As the shear
stress is increased, and as the particles with negative v move on the micro-
scopic slip planes, they become engaged with other particles or groups of
particles which have positive values of v. Moreover, for larger shear stress,
particles with positive v begin to slide. Hence, although initially more par-
ticles with negative v are active (initial demsification), the distribution of
the active particles changes as the stress is increased, and flow proceeds.
In the sequel we shall only include in our statistical averaging the values
of v associated with only the active particles or groups of particles within
the sample.

Let the macroscopic shear strain rate be denoted by Y. .Then the rate of
distortional work per umit volume, w', in the present case equals t&. Wich
this, (2.16) becomes

: cos(d + V) sin v
. Mo . (3.2)
Y cos ¢u

<+

With the aid of this equation we shall now explain the observed initial densi-
fication, subsequent dilatancy, asymptotic approach to the critical state,
and the net densification in cyclic shearing, which occur when a sample of
granular material is sheared horizontally under vertical pressure.

To this end, let

pi = vi/v, i = 1,2,..-,11, N (3'3)

be the volume fraction of the family of particles which at the considered
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instant have a dilatancy angle equal to v Vi is the collective volume of this

13
family, and it is assumed that there are a total of n active families. Hence,
n
P opyg=1. (3.4)
i=1
During the shearing of the macroscopic sample, each family makes a contribu-
tion to the total rate of dilatation proportiomal go its own fractional volume.
Hence, from Eq. (3.2) we have
%—z = -—l——; i:il Py cos(qpu + vi) sin vy (3.5)
This equation contains all observed behavior of granular materials in simple
shear. Although we may puruse the corresponding arguments in terms of a dis-
crete set of values for the dilatancy angle v, as in (3.5), arriving at the
intended conclusions, we shall consider a large number of families and use a
continuous distribution for the dilatancy angle v. To this end, let the range
~ o vl

0 0
sity function by p(v), so that p(v) dv is the volume fraction of elements

of variation of v be v , and denote the corresponding distribution den-

with v in the range v to v + dv. In this manner, instead of (3.5) we may

write
[ “+
lv 1 0
LA S , .6
7T " Toe ¢u [ p(v) cos(¢u + V) siav dv (3.6)
Vo S
0

In the sequel we shall use this equivalent form. Note that f p(v)dv = 1.

o
0
3.1 1Initial Densification

When a sample of granular material is initially sheared under a confining
pressure, the initial distribution of v's is biased toward the negative values

of v, as we discussed before; see Fig. 3.la. Therefore, the integral in
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p(V)
(a)
v
oo q +
0 Vo
(V)
®) r'_T
v
- 0 -
Yo Yo
p(v)
(e)
1/2\:0
v
r —\J°+t Q v0+¢

Figure 3.1 : (a) Initial distribution of the dilatancy angle v;
(b) Distribution of the dilatancy angle v after monotone shearing;

(c¢) The simplest distribution.
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(3.6) would be negative in this case, i.e. initially the sample must densify.
Note that, even for a completely symmetric variation in p, i.e., even if we

assume that

p(V) = =p(-v) for -vy < v < v, ,

p(v) = 0 otherwise, (3.7)

we still have

Yo

f p(v) cos(p + v) sinvdv < 0 (3.8)
-y H

0
for all p(v) that satisfy (3.7). Hence we see that ﬁ/% = dV/dy is initially
negative. This explains the observed initial densification of loose as well

as dense sands.

For illustratiom, let p(v) have a uniform symmetric distribution,

p(v)--i-for—v <v<v

2v0 0 0’
p(v) = 0 for |v] > vy - (3.9)
Then sﬁbstitution into (3.6) yields
o in 2v
1v,_ 1 ° 0
vIT "3 tan ¢u[l - -335—-] . (3.10)

This is an interesting equation, as it shows that without internal frictiom,
i.e. if ¢u = (0, there is no densification or dilatancy in the present case.
Moreover, since the quantity inside the brackets is always positive, the right-

hand side is negative, i.e. demsification.

3.2 Dilatancy

As the shearing is continued, more families of particles with positive

v's become active. This means that the distribution function p(v) (which is



83

initially biased toward negative v's), tends to become biased toward positive
values of v's, as shearing is continued, This fact has been observed experi-
mentally by Oda and RKonishi (1974) and Matsuoka (1974). However, experimental
observations are not conclusive. Therefore, it is impossible to characterize
the distribution function p(v) with any certainty. Nevertheless, as p(v)
becomes biased toward the positive values of v, see Fig. 3.1b, the absolute
value of the integral in (3.6) decreases with increasing macroscopic shear
strain, becoming zero at a certain value of the strain. The fact that such

a state will be reached sooner or later for any granular material that is
sheared under confining pressure, can be seen from Eq. (2.10), because for the
same energy consumption the particles with negative values of v can move much
more down, than the particles with positive (but equal in magnitude) values

of v can move up. The down-going particles then either become engaged with
the up-going ones, or since their v gradually decreases to zero, they become
either up-going particles or inactive. Hence, on the average, the population
of the active down-going particles decreases, and the population of the up-
going ones increases, with increasing shear strain. With the weighting func-
tion p(v) becoming biased toward the positive values of v, the integral in
(3.6) may become positive, hence leading to the phenomenon of diiatancy of
dense sand. This will continue to the critical state at which the integral
again vanishes. On the other hand, for loose sands, although the population
of the families with negative v's decreases with shearing, not enough families
with positive v's become active, since the looseness of the sand provides more
freedom for particle movement. In this case also , the distribution function
p(v) tends to become biased toward positive values of v, but the integral in

(3.6) remains negative, approaching zero asymptotically.
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We shall consider the simplest distribution function which yet explains
all the above~mentioned experimentall§ observed facts. To this end we assume
that the distribution function p(v) is uniform having the comstant width Zvo
and height l/Zvo, as shown in Fig. 3.1lc. Initially the center of this rec-
tangular distribution is located to the left of the p-axis, because, as we
discussed before, the distribution function p(v) is initially biased toward
the negative v's. As the shearin<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>